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. Intrbduction

Sphingolipids are ubiquitous constituents of eukaryotic membranes characterized by the presence of an
acylated sphingoid base, ceramide (Cer). Cer and its further metabolites sphingosine (Sph) and Sph-1-
phosphate (S1P) are now recognized as potent bioactive molecules. In many cell types, increased Cer and Sph
levels lead to cell growth arrest and apoptosis (reviewed in (1, 3, 4)). Conversely, S1P promotes cell growth
and inhibits apoptosis (reviewed in (1, 5, 6)). Cells contain signal-regulated enzymes that can interconvert Cer,
Sph, and S1P. Thus, conversion of Cer and Sph to S1P simultaneously removes pro-apoptotic signals and
creates a survival signal, and vice versa. This led to the proposal of a “sphingolipid rheostat™ as a factor
determining cell fate (7). According to this hypothesis, it is not the absolute levels but the relative amounts of
these antagonistic metabolites that determines cell fate. In agreement, it has been shown that increased S1P
protects against Cer-induced apoptosis, and depletion of S1P enhances Cer-induced apoptosis (7-10).

There are a number of agonists, especially growth and survival factors, that have been reported to
increase SphK activity, including ligands for G-protein coupled receptors (GPCRs) (11-13) and growth factor
receptors (8, 14, 15). Activation of SphK is required for at least some of the signaling effects observed.
Requirement for SphK activation was typically based on the ability of inhibitors of SphK, including dominant
negative SphK1 (16), to block agonist-induced effects and/or the ability of exogenously added S1P or a
precursor to bypass the agonist. While many early studies suggested a role for S1P as an intracellular second
messenger, it was later demonstrated that S1P is also a ligand for a family of GPCRs (reviewed in (17)).
Complicating matters, there is growing evidence that agonist-induced SphK activation leads to S1P secretion
(18, 19) and autocrine and/or paracrine signaling to the cell surface S1P receptors (20, 21).

SphK1 and S1P have been linked to growth, metastasis, and radio- and chemotherapy resistance of
tumors, including prostate tumors (reviewed in (1)). For example, it was shown that in radiation sensitive
prostate cancer cells, y-irradiation reduces SphK1 activity, leading to increased Cer and Sph levels and
subsequent apoptosis. However, radiation-resistant prostate cancer cells showed no change in SphK activity or
Cer levels. Furthermore, inhibitors of SphK sensitized these cells to y-irradiation, demonstrating a role for
SphK in prostate tumor radiation resistance (2).

In order to better understand the regulation and activation of SphK1, we had performed a two-hybrid
screen for protein interactors of SphK1. In the initial proposal, we set out to characterize several of these
interactors and their potential physiological influence on SphK1. Here we report our results investigating one
of these interactors, aminoacylase 1 (Acyl).

Updated Results

SAGE analysis (http://www.ncbi.nlm.nih.gov/SAGE/) reveals that the expression of Acyl is down
regulated upon androgen treatment of prostate cancer cells. This protein has been characterized as a cytosolic
enzyme of amino acid salvage (22), catalyzing the hydrolysis of amide-linked acyl chains of amino acids.
Because the two-hybrid screen yielded only C-terminal third of Acyl, we cloned by PCR the full length protein
from a mouse kidney cDNA library and inserted a V5 epitope tag (Task 1d; data not shown). We then
expressed both proteins in HEK 293 cells and determined that full length Acyl, like the C-terminal fragment
from the two-hybrid screen, co-immunoprecipitated with SphK1 (Task 1¢,d; figure 1). We then expressed this
construct in HEK 293 cells to see if it altered the properties of SphK1. SphK assays were performed on extracts
of HEK 293 cells expressing either vector or SphK1 and either vector, the C-terminal fragment of Acy1 or full
length Acyl (Task 1e figure 2a). Interestingly, expression of either construct slightly decreased SphK1 activity
measured in vitro. We then checked the localization of the SphK1 and Acyl by western analysis (figure 2b).
The extracts were separated into three fractions: cytosolic (Cy), Triton X-100 soluble membranes (TS), and
Triton X-100 resistant membranes (TT). Interestingly, when co-expressed with Acyl, a portion of SphK1
shifted from the cytosol to the Triton X-100 soluble membranes.

These results also suggested that SphK1 and Acyl physically interact in vivo. Thus we looked at the
localization of both proteins by immunocytochemistry. Acyl, SphK1, or both were expressed in Cos 7 cells
and stained with the corresponding epitope tags (Task 1c¢,d; figure 1). When expressed alone, Acyl had a
diffuse cytosolic staining as predicted from the literature and fractionation data (figure 2b). When SphK1 was
expressed alone, it also showed a diffuse cytosolic expression pattern with dispersed punctate staining as
reported previously (23). However, when the two proteins were expressed together, we observed not only co-
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-+ localization of the two proteins but also the appearance of tubular structures, likely membraneous (figure 3,
Appendix).

Vec  myc-SphK1
Figure 1: SphK1 co-immunoprecipitates Acyl. HEK cells were A
transfected with V5-Acyl and either vector or myc-SphK1 using

(Acyl). Only when myc-SphK1 is present is Acyl detected in the
immunoprecipitation lane.

Lipofectamine Plus (Invitrogen) as per manufactures instructions. o o
Lysates were prepared and immunoprecipitated with anti-myc (SphK1) 1 9
antibodies. The immunoprecipitates were washed and resolved by SDS- E Q E
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Figure 2: ACY1 alters the
subcellular localization of SphKl.
(A). HEK-293 cells were transfected
with vector or SphK1 and either
vector, the C-terminal fragment of
Acyl, or full length. Lysates were
then prepared and assayed as
described for SphK1 activity (23).
(B). HEK-293 cells were transfected O

with vector, myc-SphK 1, and/or V5- SphK1 -+ -+ -+
ACY1. Celis were then fractionated 2B) Vec ct-Acyl Acyl
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Acyl has a neutral pH optimum and has been shown to catalyze the reverse reaction, the addition of
amide-linked acyl chains in a CoA-independent manner (24). All of these properties are similar to the purified
cytosolic ceramidase activities (25). Because the product of ceramidase, Sph, is a substrate for SphK1, we
hypothesized that Acyl might be a ceramidase. Interaction of a ceramidase and an SphK would be a convenient
way to coordinately regulate the enzymes. To test this hypothesis (Task 2d), I performed the standard SphK1
assay in cell extracts overexpressing both SphK1 and Acyl under conditions reported to be favorable for the
activity of both enzymes. However, instead of using Sph as a substrate, I used Cer, reasoning that if Acyl were
a ceramidase, it would generate Sph that SphK 1 would phosphorylate. However, the assays showed no increase
in S1P in extracts expressing both SphK1 and Acyl versus SphK1 alone (data not shown).

Still, the above results demonstrate that Acyl and SphK1 physically interact. Therefore we next tested
whether Acy! physiologically interacted with SphK1. It is known that SphK1 over-expression promotes cell

- growth and transition through the cell cycle (23). We performed MTT assays of cell growth in NIH 3T3
fibroblasts expressing either vector or SphK1 and either vector, the C-terminal fragment of Acy1 or full length
Acyl (Task 2¢). We included the fragment because of the possibility that it may act as a dominant negative
inhibitor of Sphk1: the C-terminal fragment of Acyl binds SphK1 but lacks residues critical for Zn binding,
which is known to be necessary for Acyl activity (26). And in fact, this is just what we observed. SphK1 alone
increased the growth of cells relative to vector (figure 4), while the C-terminal fragment blocked this effect.
Moreover, expression of full length Acyl enhanced the SphK1 effect on the growth rate of cells. These data
suggest that Acyl and SphK1 work together to promote cell growth, and that the C-terminal fragment of Acyl,
acts as a dominant negative regulator of SphK1 activity on cell growth.
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Figure 4: Acyl potentiates while the 'E
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Another well characterized effect of SphK1 is the protection it provides against apoptosis (7). We
therefore investigated possible role of Acyl in SphK1-induced protection from apoptosis in a serum-deprivation
model in NIH 3T3 cells (23). Cells were again transfected with either vector or SphK1 and either vector, the C-
terminal fragment of Acyl or full length Acyl (Task 2¢). Cells were then deprived of serum for 24 h and the
amount of apoptosis assessed by observation of nuclear condensation and fragmentation (figure 5). As
expected, SphK1 protected cells from apoptosis. Full length Acyl slightly potentiated the SphK1-protection.
Strikingly, the C-terminal fragment of Acy1 had little effect on apoptosis alone but almost completely blocked
the ability of SphK1 to protect against apoptosis. These results further substantiate a role for Acyl in the
regulating the physiological activities SphK1 and again demonstrate that the C-terminal fragment of Acy1 acts
as a dominant regulator of SphK1.

45 ]

40 7 _I_
Figure 5: Acyl potentiates while the C- w 39 e
terminal fragment attenuates SphK1 'g 30 7 oz
protection from apoptosis. NIH 3T3 a 251 o=
fibroblasts were plated at equal numbers and 2 201 e
transfected with the indicated plasmids. 24 h VTR =

o -
later the cells were starved for serum for an & 10 1
additional 24 h. After that time, they were ]
fixed on the dish and the nuclear condensation 5 .
and fragmentation was assessed using Hoechst 0"
dye. At least 300 cells were counted for each
transfectant. Sph K1 - + - + - +
Vec ct-ACY1 ACY1

Key Research Results
- SphK1 physically interacts with both the C-terminus of Acy1 as well as full length.
- Acyl alters the intracellular distribution of SphK1.
- Acyl potentiates SphK1 stimulation of cell growth and inhibition of apoptosis.

- The C-terminus of Acyl acts as a dominant negative inhibitor of SphK1-induced cell growth and
inhibition of apoptosis.

Reportable Outcomes
- Speaker, 37" Annual Southeastern Regional Lipid Conference. Cashier, NC, Nov. 6-8, 2003.
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“Sphingosine Kinase 1 interacting proteins modulate its growth-promoting and anti-apoptotic
effects.”

- Presenter, 2002 Daniel T. Watts Research Symposium. Richmond, VA, Oct.14, 2002.
“Aminoacylase 1 Interacts with Sphingosine Kinase 1 to Modulate Its Growth-Promoting and Anti-
Apoptotic Effects.”

- Invited Speaker, Lipid Signalling: Cellular Events and Their Biophysical Mechanisms. Madrid,
Spain, May 20-22, 2003.

“Sphingosine-1-Phosphate, an Important Lipid Mediator.”

Conclusion

The data accumulated over the period covered in the first reporting period strongly suggests that SphK1
physically interacts with the C-terminal third of Acyl. Moreover, the Acyl physiologically interacts with
SphK1, regulating both its pro-growth and anti-apoptotic effects. While it is still formally possible that SphK1
and Acyl act in parallel growth-promoting and apoptosis-inhibiting pathways, the weight of the data showing
that the proteins physically interact and that Acy1 effects two independent effects of SphK1 strongly suggests
that Acyl is a bona fide physiological regulator of SphK1. These results also suggest that the C-terminus of
Acyl acts as a dominant negative inhibitor of SphK1-induced cell growth and inhibition of apoptosis. Thus,
further characterization of the SphK1-Acy1 interface may provide a target for inhibition of the tumor promoting
activities of SphK1.
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